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Introduction

Consider the following multi-block constrained optimization problem on Rieman-
nian manifolds,

min
θ=[θ(1),...,θ(m)]

θ(i)∈Θ(i)⊆M(i) for i = 1, . . . ,m

f (θ) (1)

i.e. the objective function f maps smoothly a point on the product manifold
M(1) × · · · × M(m). In order to obtain a first-order optimal solution to (1), we
consider various Riemannian generalizations of Block Majorization-Minimization
(BMM) algorithm in the Euclidean space [HRLP15]. The high-level idea of BMM
in the is that, in order to minimize a multi-block objective, one can minimize a
majorizing surrogate of the objective in each block in a cyclic order. The same
idea of applying the MM principle in a blockwise fashion may seem very natural
in the Riemannian setting, but the way to do so is not necessarily unique. Below
we give our RBMM algorithm which includes two different options,

RBMM:



For i = 1, 2, . . . ,m:
Option 1:
Majorize on Manifold and Minimize on Manifold (MmMm)

g
(i)
n ←

[
Majorizing surrogate of θ 7→ f

(i)
n (θ) at θ(i)n−1

]
θ
(i)
n ∈ argmin

θ∈Θ(i) g
(i)
n (θ)

Option 2:
Majorize on Tangent spaces and Minimize on Tangent Spaces (MtMt)

ĝ
(i)
n ←

[
Majorizing surrogate of η 7→ f̂

(i)
n ◦ Rtr

θ
(i)
n−1

(η) at 0
]

θ
(i)
n ← Minimize ĝ

(i)
n on T ∗

θ
(i)
n−1

and retract onto Θ(i) ⊆M(i)
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Figure 1: Illustration of parallel transport (left) and retrations (right)
Below we give some notations and preliminaries of Riemannian optimization,

Definition 1 (Geodesic L-smoothness) A function F :
∏m

i=1M
(i) → R is

geodesically L-smooth (g-smooth in short) if for each x = (x(1), . . . , x(m)),y =

(y(1), . . . , y(m)) ∈
∏m

i=1M
(i) where there exists a minimizing geodesic joining

x(i) and y(i) for each i = 1, . . . ,m,∥∥∥gradiF (x)− Γ
y(i)→x(i)

(gradiF (y))
∥∥∥ ≤ L

m
d(x,y)

where Γ
y(i)→x(i)

is the parallel transport along a minimizing geodesic joining x(i)

and y(i) in M(i), and d(x,y) is geodesic distance.

For Option 1, the majorizing surrogate g
(i)
n is chosen so that

(1) (Majorization) g(i)n (x)− f
(i)
n (x) ≥ 0 for all x ∈M(i);

(2) (Sharpness) g(i)n (θ
(i)
n−1) = f

(i)
n (θ

(i)
n−1).

Results

Below we give some assumptions for analysis of Option 1 in RBMM,

(A1) For Option 1, we assume the following hold. For the objective:

(i) There exists a constant Lf > 0 such that the function f : Θ = Θ(1) × · · · × Θ(m) → R is
geodesically Lf -smooth in each block coordinate.

For surrogates, one of the following holds:

(ii-g) (g-smooth surrogates) Each surrogate g
(i)
n is Lg-geodesically-smooth for some con-

stant Lg ≥ 0 for all n ≥ 1 and i = 1, . . . ,m.

(ii-p) (Proximal surrogates) Each g
(i)
n is a proximal surrogate: For each n ≥ 1 and some

constant λn ≥ Lf ,

g
(i)
n (θ) = f

(i)
n (θ) +

λn
2
d2(θ, θ

(i)
n−1).

Moreover, λn = O(1).

Furthermore, we require the following for the constraint sets:

(iii) For each i = 1, . . . ,m, there exists a uniform lower bound r0 > 0 for rcvx(x) over
x ∈ Θ(i).

(A1-1) (Distance-regularizing surrogates) There exists a strictly increasing function ϕ :
[0,∞)→ R such that ϕ(0) = 0 and

h
(i)
n (θ) := g

(i)
n (θ)− f

(i)
n (θ) ≥ ϕ(d(θ, θ

(i)
n−1))

for all n ≥ 1 and i = 1, . . . ,m.

We first give asymptotic convergence result of RBMM with Option 1,

Theorem 2 (Asymptotic convergence to stationary points; many blocks) Let f denote
the objective function in (1) with m ≥ 2. Let (θn)n≥0 be an output of RBMM under (A1)
(with either types of surrogages), and (A1-1) hold. Then every limit point of (θn)n≥0 is a
stationary point of f over Θ.

The following theorem is the result of conplexity of Option 1 in RBMM,

Theorem 3 (Rate of convergence for smooth surrogates) Let f denote the objective
function in (1) with m ≥ 2. Let (θn)n≥0 be an output of RBMM under (A1) with g-smooth
surrogates. Assume geodesic convexity of the constraint sets. Further assume that (A1-1)
holds with ϕ(x) = cx2 for some constant c > 0. Then the following hold:

(i) (Worst-case rate of convergence) There exists constants M, c > 0 independent of θ0
such that

min
1≤k≤n

− m∑
i=1

inf
η∈T ∗

θ
(i)
k

,∥η∥≤1

〈
gradi f (θk),

η

min{r0, 1}

〉 ≤ M + c
∑∞

n=1∆n

n1/4/(log n)1/2

(ii) (Worst-case iteration complexity) The worst-case iteration complexity Nϵ for RBMM sat-
isfies Nϵ = O

(
ε−4

(
log ε−2

))
.

(iii) (Optimal convergence rate) Further assume that the surrogate gaps h
(i)
n = g

(i)
n − f

(i)
n

satisfy h
(i)
n (θ) ≤ Cd2(θ, θ

(i)
n ) for some constant C > 0. Then

min
1≤k≤n

− m∑
i=1

inf
η∈T ∗

θ
(i)
k

,∥η∥≤1

〈
gradi f (θk),

η

min{r0, 1}

〉 ≤ M + c
∑∞

n=1∆n

n1/2/(log n)1/2

and the worst-case iteration complexity Nϵ for RBMM is Nϵ = O
(
ε−2

(
log ε−2

))
.

Examples

1. Euclidean BMM [HRLP15].

2. Block Prox-linear and Block PGD [XY13].

3. Block Euclidean prox-linear on Riemannian manifold.

4. Block Riemannian prox-linear and Block Riemannian GD.

5. Block Proximal Updates on Hadamard manifolds.

6. Block Proximal Updates on Stiefel manifolds.

Numerical experiments

CANDECOMP/PARAFAC (CP) dictionary learning: In the CANDE-
COMP/PARAFAC (CP) decomposition problem [KB09], given a data tensor
X ∈ RI1×···×Im and an integer R > 0, we would like to find the loading ma-
trices U (i) ∈ RIi×R for i = 1, · · · ,m such that

X ≈
R∑
k=1

m⊗
i=1

U (i)[:, k],

where U (i)[:, k] denotes the kth column of the Ii × R loading matrix matrix U (i)

and ⊗ denotes the outer product. We could formulate the above tensor decom-
position problem as the following optimization problem:

argmin
U (1)∈M(1),...,U (m)∈M(m)

f
(
U (1), . . . , U (m)

)
:=

∥∥∥∥∥∥X −
R∑
k=1

m⊗
i=1

U (i)[:, k]

∥∥∥∥∥∥
2

F

 ,

whereM(i) ⊆ RIi×R is an embedded manifold, which gives additional Rieman-
nian constraints.
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Figure 2: Top left and top right are some typical cases of synthetic data in Euclidean case; bottom
left is the typical result when first block is Stiefel manifold; bottom right is a synthetic example
where first block is a point on low-rank manifold. The average relative reconstruction error with
standard deviation are shown by the solid lines and shaded regions of respective colors.
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