Convergence and complexity of Block Majorization-Minimization on Riemannian manifolds

Yuchen Li
Department of mathematics, University of Wisconsin-Madison

April 10, 2023, IFDS

Joint work with Hanbaek Lyu, Laura Balzano and Deanna Needell

Outline

Introduction

Statement of results

Examples

Numerical experiments

- Problem Set-up
- (Objective function) $f: \mathcal{M}^{(1)} \times \cdots \times \mathcal{M}^{(m)} \rightarrow \mathbb{R}$ - geodesically smooth in each block
- (Constraint Sets) $\boldsymbol{\Theta}=\Theta^{(1)} \times \cdots \times \Theta^{(m)} \subseteq \mathcal{M}^{(1)} \times \cdots \times \mathcal{M}^{(m)}-\mathcal{M}^{(i)}$ complete Riemannian manifold, $\boldsymbol{\Theta}^{(i)}$ geodesically convex for rate of convergence
- (Constrained nonconvex problem)

$$
\boldsymbol{\theta}^{*} \in \underset{\boldsymbol{\theta}=\left[\theta_{1}, \ldots, \theta_{m}\right] \in \boldsymbol{\Theta}}{\arg \min } f\left(\theta_{1}, \ldots, \theta_{m}\right) .
$$

- Related works
- (Euclidean BMM) Rate of convergence for convex problem is $\widetilde{O}\left(\varepsilon^{-1}\right)$ ([HRLP15]).
- (Riemannian MM) Rate of convergence for certain type of majorizer on specific manifolds:
(i) Majorizer on manifolds:
- Linear majorizer on Stiefel manifolds [BKSP21]
- Proximal majorizer on Hadamard manifolds [BFO15]
(ii) Majorizer on tangent spaces:
- Tangent prox-linear on Stiefel manifolds ([CMMCSZ20])
- Tangent prox-linear on Riemannian manifolds [HW22] (assuming retraction convexity)

Figure: Example of a retraction.

- Majorization-Minimizaiton
- Choose a majorizing surrogate $g_{n}(\boldsymbol{\theta})$ of f at $\boldsymbol{\theta}_{n-1}$
- $\boldsymbol{\theta}_{n} \leftarrow \arg \min _{\boldsymbol{\theta} \in \boldsymbol{\Theta}} g_{n}(\boldsymbol{\theta})$
- Ex: PGD
- $g_{n}(\boldsymbol{\theta})=$
$f\left(\boldsymbol{\theta}_{n-1}\right)+\left\langle\nabla f\left(\boldsymbol{\theta}_{n-1}\right), \boldsymbol{\theta}-\boldsymbol{\theta}_{n-1}\right\rangle+\frac{L}{2}\left\|\boldsymbol{\theta}-\boldsymbol{\theta}_{n-1}\right\|^{2}$ (prox-linear surr)
- $\boldsymbol{\theta}_{n}=\operatorname{Proj}_{\Theta}\left(\boldsymbol{\theta}_{n-1}-\frac{1}{L} \nabla f\left(\boldsymbol{\theta}_{n-1}\right)\right)$
- Ex: Linear surrogate over Stiefel Manifold
- $g_{n}(\boldsymbol{\theta}):=f_{n}\left(\boldsymbol{\theta}_{n-1}\right)+\left\langle\nabla f_{n}\left(\boldsymbol{\theta}_{n-1}\right), \boldsymbol{\theta}-\boldsymbol{\theta}_{n-1}\right\rangle$
- $\boldsymbol{\theta}_{n}=\operatorname{Proj}_{\mathcal{V}^{n \times k}}\left(-\nabla f_{n}\left(\boldsymbol{\theta}_{n-1}\right)\right)$

Figure: Example of linear surrogate over Stiefel manifold (Excerpted from [BKSP21])

- (Euclidean) Block Majorization-minimization: For $n=1, \ldots, N$ and $i=1, \ldots, m$ $\left\{\begin{array}{l}g_{n}^{(i)} \leftarrow\left[\text { Majorizing surrogate of } f_{n}^{(i)}(\theta):=f\left(\theta_{n}^{(1)}, \cdots, \theta_{n}^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)\right] \\ \theta_{n}^{(i)} \in \arg \min _{\theta \in \Theta^{(i)} \subseteq \mathbb{R}^{\prime} /} g_{n}^{(i)}(\theta)\end{array}\right.$
- Sequentially update each block while fixing the rest.
- Special case: Block PGD (block coordinate descent)
- Riemannian Block MM: For $n=1, \ldots, N$ and $i=1, \ldots, m$
$g_{n}^{(i)} \leftarrow\left[\right.$ Majorizing surrogate of $\left.\theta \mapsto f_{n}^{(i)}(\theta):=f\left(\theta_{n}^{(1)}, \cdots, \theta_{n}^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)\right]$
- $\theta \in \Theta^{(i)} \subseteq \mathcal{M}^{(i)}$: a Riemannian manifold
- Riemannian Block MM: For $n=1, \ldots, N$ and $i=1, \ldots, m$
$g_{n}^{(i)} \leftarrow\left[\right.$ Majorizing surrogate of $\left.\theta \mapsto f_{n}^{(i)}(\theta):=f\left(\theta_{n}^{(1)}, \cdots, \theta_{n}^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)\right]$
- $\theta \in \Theta^{(i)} \subseteq \mathcal{M}^{(i)}$: a Riemannian manifold
- Two options for minimizing $g_{n}^{(i)}$:

Option 1: $\theta_{n}^{(i)} \in \underset{\theta \in \Theta(i)}{\arg \min } g_{n}^{(i)}(\theta) ; \quad$ Option 2: $\left\{\begin{array}{l}V_{n}^{(i)} \in \arg \min _{V \in T_{\theta_{n-1}^{(i)}}} g_{n}^{(i)}\left(\theta_{n-1}^{(i)}+V\right) \\ \alpha_{n}^{(i)} \leftarrow \operatorname{line} \operatorname{search} \\ \theta_{n}^{(i)}=\operatorname{Rtr}_{\theta_{n-1}^{(i)}}\left(\alpha_{n}^{(i)} V_{n}^{(i)}\right)\end{array}\right.$

- Riemannian Block MM: For $n=1, \ldots, N$ and $i=1, \ldots, m$
$g_{n}^{(i)} \leftarrow\left[\right.$ Majorizing surrogate of $\left.\theta \mapsto f_{n}^{(i)}(\theta):=f\left(\theta_{n}^{(1)}, \cdots, \theta_{n}^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)\right]$
- $\theta \in \Theta^{(i)} \subseteq \mathcal{M}^{(i)}$: a Riemannian manifold
- Two options for minimizing $g_{n}^{(i)}$:

Option 1: $\theta_{n}^{(i)} \in \arg \min g_{n}^{(i)}(\theta)$; Option 2: $\left\{\begin{array}{l}V_{n}^{(i)} \in \arg \min _{V \in T_{\theta_{n-1}^{(i)}}} g_{n}^{(i)}\left(\theta_{n-1}^{(i)}+V\right) \\ a^{(i)}\end{array}\right.$ Option 1: $\theta_{n} \in \underset{\theta \in \Theta^{(i)}}{\arg \min } g_{n}^{(i)}(\theta)$;

Option 2:
$\alpha_{n}^{(i)} \leftarrow$ line search

$$
\theta_{n}^{(i)}=\operatorname{Rtr}_{\theta_{n-1}^{(i)}}\left(\alpha_{n}^{(i)} V_{n}^{(i)}\right)
$$

- Pros and Cons:
- Riemannian Block MM: For $n=1, \ldots, N$ and $i=1, \ldots, m$
$g_{n}^{(i)} \leftarrow\left[\right.$ Majorizing surrogate of $\left.\theta \mapsto f_{n}^{(i)}(\theta):=f\left(\theta_{n}^{(1)}, \cdots, \theta_{n}^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)\right]$
- $\theta \in \Theta^{(i)} \subseteq \mathcal{M}^{(i)}$: a Riemannian manifold
- Two options for minimizing $g_{n}^{(i)}$:

Option 1: $\theta_{n}^{(i)} \in \arg \min g_{n}^{(i)}(\theta) ;$ $\theta \in \Theta^{(i)}$

$$
\begin{aligned}
& V_{n}^{(i)} \in \arg \min _{V \in T_{\theta_{n-1}^{(i)}}} g_{n}^{(i)}\left(\theta_{n-1}^{(i)}+V\right) \\
& \alpha_{n}^{(i)} \leftarrow \operatorname{line} \text { search } \\
& \theta_{n}^{(i)}=\operatorname{Rtr}_{\theta_{n-1}^{(i)}}\left(\alpha_{n}^{(i)} V_{n}^{(i)}\right)
\end{aligned}
$$

- Pros and Cons:
- Option 1 works for more general surrogates and objective functions, but the convergence analysis is more complicated
- Riemannian Block MM: For $n=1, \ldots, N$ and $i=1, \ldots, m$
$g_{n}^{(i)} \leftarrow\left[\right.$ Majorizing surrogate of $\left.\theta \mapsto f_{n}^{(i)}(\theta):=f\left(\theta_{n}^{(1)}, \cdots, \theta_{n}^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)\right]$
- $\theta \in \Theta^{(i)} \subseteq \mathcal{M}^{(i)}$: a Riemannian manifold
- Two options for minimizing $g_{n}^{(i)}$:

Option 1: $\theta_{n}^{(i)} \in \arg \min g_{n}^{(i)}(\theta)$; $\theta \in \Theta^{(i)}$

$$
\begin{aligned}
& V_{n}^{(i)} \in \arg \min _{V \in T_{\theta_{n-1}^{(i)}}} g_{n}^{(i)}\left(\theta_{n-1}^{(i)}+V\right) \\
& \alpha_{n}^{(i)} \leftarrow \operatorname{line} \operatorname{search} \\
& \theta_{n}^{(i)}=\operatorname{Rtr}_{\theta_{n-1}^{(i)}}\left(\alpha_{n}^{(i)} V_{n}^{(i)}\right)
\end{aligned}
$$

- Pros and Cons:
- Option 1 works for more general surrogates and objective functions, but the convergence analysis is more complicated
- Option 2 enjoys much simpler convergence analysis, but currently only allow prox-linear surrogates for Euclidean submanifolds, also the objective function need to be smooth in ambient space.
- Riemannian Block MM: For $n=1, \ldots, N$ and $i=1, \ldots, m$
$g_{n}^{(i)} \leftarrow\left[\right.$ Majorizing surrogate of $\left.\theta \mapsto f_{n}^{(i)}(\theta):=f\left(\theta_{n}^{(1)}, \cdots, \theta_{n}^{(i-1)}, \theta, \theta_{n-1}^{(i+1)}, \cdots, \theta_{n-1}^{(m)}\right)\right]$
- $\theta \in \Theta^{(i)} \subseteq \mathcal{M}^{(i)}:$ a Riemannian manifold
- Two options for minimizing $g_{n}^{(i)}$:

Option 1: $\theta_{n}^{(i)} \in \arg \min g_{n}^{(i)}(\theta)$; $\theta \in \Theta^{(i)}$

Option 2:

- Pros and Cons:
- Option 1 works for more general surrogates and objective functions, but the convergence analysis is more complicated
- Option 2 enjoys much simpler convergence analysis, but currently only allow prox-linear surrogates for Euclidean submanifolds, also the objective function need to be smooth in ambient space.
- Rmk: The two options coincide in the Euclidean setting with prox-linear surrogates.
- (Subspace Estimation with Grassmannian Geodesics[BRFB23])

$$
X_{i}=U_{i} G_{i}+N_{i}
$$

where $U_{i} \in \mathbb{R}^{d \times k}$ has orthonormal columns representing a point on the Grassmannian $\mathcal{G}(k, d) ; G_{i} \in \mathbb{R}^{k \times \ell}$ holds weight or loading vectors; and $N_{i} \in \mathbb{R}^{d \times \ell}$ is an independent additive noise matrix.

- Goal: Estimate U_{i} given all X_{i}
- (Subspace Estimation with Grassmannian Geodesics [BRFB23])

$$
X_{i}=U_{i} G_{i}+N_{i}
$$

where $U_{i} \in \mathbb{R}^{d \times k}$ has orthonormal columns representing a point on the Grassmannian $\mathcal{G}(k, d) ; G_{i} \in \mathbb{R}^{k \times \ell}$ holds weight or loading vectors; and $N_{i} \in \mathbb{R}^{d \times \ell}$ is an independent additive noise matrix.

- Goal: Estimate U_{i} given all X_{i}

Model U_{i} :

$$
U_{i}=U\left(t_{i}\right)=H \cos \left(\Theta t_{i}\right)+Y \sin \left(\Theta t_{i}\right)
$$

Objective function f,

$$
f(U)=f(H, Y, \Theta)=\min _{\left\{G_{i}\right\}_{i=1}^{T}}\left\|X_{i}-U\left(t_{i}\right) G_{i}\right\|_{F}^{2}=-\sum_{i=1}^{T}\left\|X_{i}^{T} U\left(t_{i}\right)\right\|_{F}^{2}+c
$$

- Two blocks: $Q=[H Y]$ and Θ
- $Q \in \mathcal{V}^{d \times 2 k}$, a stiefel manifold
- Other examples:
- (Optimilstic likelihood under Fisher-Rao distnce $\left[\mathrm{NSAY}^{+} 19\right]$)

$$
\min _{\mu, \Sigma} f(\mu, \Sigma) \triangleq\left\langle M^{-1} \sum_{m=1}^{M}\left(x_{m}-\mu\right)\left(x_{m}-\mu\right)^{T}, \Sigma^{-1}\right\rangle+\log \operatorname{det} \Sigma
$$

where $\Sigma \in \mathbb{S}_{++}^{n}$ the manifold of positive definite matrices.

- (Robust PCA)

$$
\min _{L, S} f(L, S) \triangleq \lambda\|S\|_{1}+\frac{1}{2 \mu}\|M-L-S\|_{F}^{2}
$$

$\operatorname{rank}(L) \leq r$, so L represents a point on low-rank manifold.

Outline

Introduction

Statement of results

Examples

Numerical experiments

Preliminaries

Assumption 1 (g-smooth objective and sublevel compactness) There exists a constant $L_{f}>0$ such that the function $f: \boldsymbol{\Theta}=\Theta^{(1)} \times \cdots \times \Theta^{(m)} \rightarrow \mathbb{R}$ is geodesically L_{f}-smooth of order β in each block coordinate. Furthermore, the sublevel sets $f^{-1}((-\infty, a))=\{\boldsymbol{\theta} \in \boldsymbol{\Theta}: f(\boldsymbol{\theta}) \leq a\}$ are compact for each $a \in \mathbb{R}$.

Definition (Geodesic L-smoothness of order β)

The objective function $f: \mathcal{M} \rightarrow \mathbb{R}$ is geodesically L-smooth of order $\beta(\beta>1)$ if it satisfies

$$
\left\|\operatorname{grad} f(x)-\Gamma_{y}^{x}(\operatorname{grad} f(y))\right\| \leq \frac{L}{2} d^{\beta-1}(x, y)
$$

for all $x, y \in \mathcal{M}$, where $\Gamma_{x}^{y}: T_{x} \rightarrow T_{y}$ is the parallel transport along a minimal geodesic joining x and $y, d(x, y)$ is the distance between x and y.

Assumption 2 (g-convex constraints) Each $\Theta^{(i)}$ is geodesically convex. That is, given any two points in $\Theta^{(i)}$, there exists a distance minimizing geodesic contained in $\Theta^{(i)}$ that joins the two points.

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:
(i) (Option 1) Each surrogate $g_{n}^{(i)}$ is L_{g}-geodesically-smooth of order β for some constant $L_{g} \geq 0$ for all $n \geq 1$ and $i=1, \ldots, m$.

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:
(i) (Option 1) Each surrogate $g_{n}^{(i)}$ is L_{g}-geodesically-smooth of order β for some constant $L_{g} \geq 0$ for all $n \geq 1$ and $i=1, \ldots, m$.
(ii) (Option 1) The manifolds $\mathcal{M}^{(1)}, \ldots, \mathcal{M}^{(m)}$ have uniformly lower bounded injectivity radius; $g_{n}^{(i)}=$ proximal surrogates:

$$
g_{n}^{(i)}(\theta)=f_{n}^{(i)}(\theta)+\frac{\lambda_{n}}{2} d^{2}\left(\theta, \theta_{n-1}^{(i)}\right) . \quad \text { (could be 'non- } g \text {-smooth') }
$$

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:
(i) (Option 1) Each surrogate $g_{n}^{(i)}$ is L_{g}-geodesically-smooth of order β for some constant $L_{g} \geq 0$ for all $n \geq 1$ and $i=1, \ldots, m$.
(ii) (Option 1) The manifolds $\mathcal{M}^{(1)}, \ldots, \mathcal{M}^{(m)}$ have uniformly lower bounded injectivity radius; $g_{n}^{(i)}=$ proximal surrogates:

$$
g_{n}^{(i)}(\theta)=f_{n}^{(i)}(\theta)+\frac{\lambda_{n}}{2} d^{2}\left(\theta, \theta_{n-1}^{(i)}\right) . \quad \text { (could be 'non-g-smooth') }
$$

(iii) (Option 2) The manifolds $\mathcal{M}^{(1)}, \ldots, \mathcal{M}^{(m)}$ are compact; $g_{n}^{(i)}=$ prox-linear surrogates:

$$
\begin{aligned}
& g_{n}^{(i)}(\theta)=f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right)+\left\langle\nabla f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right), \theta-\theta_{n-1}^{(i)}\right\rangle+\frac{\lambda_{n}}{2}\left\|\theta-\theta_{n-1}^{(i)}\right\|^{2} \\
& \quad \text { (could be 'non-g-smooth') }
\end{aligned}
$$

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:
(i) (Option 1) Each surrogate $g_{n}^{(i)}$ is L_{g}-geodesically-smooth of order β for some constant $L_{g} \geq 0$ for all $n \geq 1$ and $i=1, \ldots, m$.
(ii) (Option 1) The manifolds $\mathcal{M}^{(1)}, \ldots, \mathcal{M}^{(m)}$ have uniformly lower bounded injectivity radius; $g_{n}^{(i)}=$ proximal surrogates:

$$
g_{n}^{(i)}(\theta)=f_{n}^{(i)}(\theta)+\frac{\lambda_{n}}{2} d^{2}\left(\theta, \theta_{n-1}^{(i)}\right) . \quad \text { (could be 'non-g-smooth') }
$$

(iii) (Option 2) The manifolds $\mathcal{M}^{(1)}, \ldots, \mathcal{M}^{(m)}$ are compact; $g_{n}^{(i)}=$ prox-linear surrogates:

$$
\begin{aligned}
& g_{n}^{(i)}(\theta)=f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right)+\left\langle\nabla f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right), \theta-\theta_{n-1}^{(i)}\right\rangle+\frac{\lambda_{n}}{2}\left\|\theta-\theta_{n-1}^{(i)}\right\|^{2} \\
& \quad \text { (could be 'non-g-smooth') }
\end{aligned}
$$

- Why proximal surrogates in (ii) may not be g-smooth (i)?

Proposition (Riemannian gradient of geodesic distance)
injectivity radius
$\mathcal{M}=$ Complete Riemannian manifold, $p \in \mathcal{M}$ with $\overbrace{\operatorname{inj}(p)} \geq r$. Let $h: \mathcal{M} \rightarrow \mathbb{R}$, $h(x)=d_{\mathcal{M}}^{2}(x, p)$. If $d(x, p)<r$, then $\operatorname{grad}(h)=-2 \operatorname{Exp}_{x}^{-1}(p)$ as a vector in $T_{x} \mathcal{M}$.

(a)

(b)

Figure: Examples on g-smoothness of $d^{2}(x, p)$. Panel (a) is an example in Euclidean space; Panel (b) is a counterexample in hyperbolic space.

Proposition (Riemannian gradient of geodesic distance)

injectivity radius
$\mathcal{M}=$ Complete Riemannian manifold, $p \in \mathcal{M}$ with $\overbrace{\operatorname{inj}(p)} \geq r$. Let $h: \mathcal{M} \rightarrow \mathbb{R}$, $h(x)=d_{\mathcal{M}}^{2}(x, p)$. If $d(x, p)<r$, then $\operatorname{grad}(h)=-2 \operatorname{Exp}_{x}^{-1}(p)$ as a vector in $T_{x} \mathcal{M}$.

(a)

(b)

(c)

Figure: Examples on g-smoothness of $d^{2}(x, p)$ on S^{1}. Panel (a) is an counterexample; Panel (b) (c) are the cases when g-smoothness inequality becomes an equality with $L=2$.

Theorem ((LLBN '23+) Asymptotic convergence to stationary points; two blocks) $f=$ Objective function with $m=2$ blocks. $\left(\boldsymbol{\theta}_{n}\right)_{n \geq 0}=$ Output of RBMM. Suppose Assumptions 1-3 hold. Then every limit point of $\left(\boldsymbol{\theta}_{n}\right)_{n \geq 0}$ is a stationary point of f over $\boldsymbol{\Theta}$.

Assumption 4 (Distance-regularizing surrogates) There exists a strictly increasing function $\phi:[0, \infty) \rightarrow \mathbb{R}$ such that $\phi(0)=0$ and

$$
h_{n}^{(i)}(\theta):=g_{n}^{(i)}(\theta)-f_{n}^{(i)}(\theta) \geq \phi\left(d\left(\theta, \theta_{n-1}^{(i)}\right)\right)
$$

for all $n \geq 1$ and $i=1, \ldots, m$.

Assumption 4 (Distance-regularizing surrogates) For Option 1, there exists a strictly increasing function $\phi:[0, \infty) \rightarrow \mathbb{R}$ such that $\phi(0)=0$ and

$$
h_{n}^{(i)}(\theta):=g_{n}^{(i)}(\theta)-f_{n}^{(i)}(\theta) \geq \phi\left(d\left(\theta, \theta_{n-1}^{(i)}\right)\right)
$$

for all $n \geq 1$ and $i=1, \ldots, m$.
Theorem (Asymptotic convergence to stationary points; many blocks)
Let f denote the objective function with $m \geq 2$. Let $\left(\boldsymbol{\theta}_{n}\right)_{n \geq 0}$ be a output of RBMM. Suppose Assumptions 1, 3, 4(for Option 1) hold. Then every limit point of $\left(\boldsymbol{\theta}_{n}\right)_{n \geq 0}$ is a stationary point of f over $\boldsymbol{\Theta}$.

Definition (ε-approxiate stationary point): we say $\boldsymbol{\theta}^{*} \in \boldsymbol{\Theta}$ is an ε-approxiate stationary point of f over $\boldsymbol{\Theta}$ if

$$
-\inf _{\eta \in T_{\boldsymbol{\theta}_{n}}^{*}}\left\langle\operatorname{grad} f\left(\boldsymbol{\theta}^{*}\right), \frac{\eta}{\|\eta\|}\right\rangle \leq \sqrt{\varepsilon}
$$

where $T_{\theta}^{*} \mathcal{M}^{(i)}:=\left\{\eta \in T_{\theta} \mathcal{M}^{(i)}: \operatorname{Exp}_{\theta}(\eta) \in \Theta^{(i)}\right\}$.
Definition (worst-case iteration complexity) :

$$
N_{\varepsilon}:=\sup _{\boldsymbol{\theta}_{0} \in \Theta} \inf \left\{n \geq 1 \mid \boldsymbol{\theta}_{n} \text { is an } \varepsilon \text {-approximate stationary point of } f \text { over } \boldsymbol{\Theta}\right\},
$$

where $\left(\boldsymbol{\theta}_{n}\right)_{n \geq 0}$ is a sequence of estimates produced by the algorithm with initial estimate $\boldsymbol{\theta}_{0}$.

Theorem (Rate of convergence for proximal surrogates on Riemannian manifolds with lower bounded injectivity radius)
$f=$ Objective function with $m \geq 2$ blocks. $\left(\boldsymbol{\theta}_{n}\right)_{n \geq 0}=$ output of RBMM. Suppose Assumptions 1-3 hold. Assume [Option 1 with prox surrogates] or [Option 2 with prox-linear surrogates].
(i) (Worst-case rate of convergence) There exists constants M and $c>0$ independent of $\boldsymbol{\theta}_{0}$ such that

$$
\min _{1 \leq k \leq n}\left[-\inf _{\eta \in T_{\boldsymbol{\theta}_{n}^{*}}^{*}}\left\langle\operatorname{grad} f\left(\boldsymbol{\theta}_{n}\right), \frac{\eta}{\|\eta\|}\right\rangle\right] \leq \frac{M}{\sqrt{n} / \log n}
$$

(ii) (Worst-case iteration complexity) The worst-case iteration complexity N_{ϵ} for RBMM satisfies $N_{\epsilon}=O\left(\varepsilon^{-1}\left(\log \varepsilon^{-1}\right)^{2}\right)$

Theorem (Rate of convergence for smooth surrogates)

$f=$ objective function with $m \geq 2$ blocks. $\left(\boldsymbol{\theta}_{n}\right)_{n \geq 0}=$ output of RBMM. Suppose Assumptions 1-4 hold. Assume [Option 1 with g-smooth surrogates]. Suppose Assumption 5 holds with $\phi(x)=c x^{\beta}$ for some constant $c>0$. Let $\alpha:=(\beta-1) / \beta^{2}$.
(i) (Worst-case rate of convergence) There exists constants $M, c>0$ independent of $\boldsymbol{\theta}_{0}$ such that

$$
\min _{1 \leq k \leq n}\left[-\inf _{\eta \in T_{\boldsymbol{\theta}_{n}}^{*}}\left\langle\operatorname{grad} f\left(\boldsymbol{\theta}_{n}\right), \frac{\eta}{\|\eta\|}\right\rangle\right] \leq \frac{M+c \sum_{n=1}^{\infty} \Delta_{n}\left(\boldsymbol{\theta}_{0}\right)}{n^{\alpha} /(\log n)^{1 / 2}}
$$

(ii) (Worst-case iteration complexity) The worst-case iteration complexity N_{ϵ} for $R B M M$ satisfies $N_{\epsilon}=O\left(\varepsilon^{-1 / 2 \alpha}\left(\log \varepsilon^{-1}\right)\right)$.
(iii) (Optimal convergence rate) Further assume that the surrogate gaps $h_{n}^{(i)}=g_{n}^{(i)}-f_{n}^{(i)}$ satisfy $h_{n}^{(i)}(\theta) \leq C d^{\beta}\left(\theta, \theta_{n}^{(i)}\right)$ for some constant $C>0$. Then the results in (i)-(ii) hold with the improved exponent $\alpha=(\beta-1) / \beta$.

Outline

Introduction

Statement of results

Examples

Numerical experiments

- (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])
- (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])
- Our general result gives convergence rate $\widetilde{O}\left(\varepsilon^{-1}\right)$ even for nonconvex objectives with convex constraints.
- (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])
- Our general result gives convergence rate $\widetilde{O}\left(\varepsilon^{-1}\right)$ even for nonconvex objectives with convex constraints.
- The same rate was known for convex problems [HRLP15]
- (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])
- Our general result gives convergence rate $\widetilde{O}\left(\varepsilon^{-1}\right)$ even for nonconvex objectives with convex constraints.
- The same rate was known for convex problems [HRLP15]
- (Block Prox-linear and Block PGD) Consider the following block prox-linear update proposed in [XY13].

$$
\theta_{n}^{(i)} \leftarrow \underset{\theta \in \Theta^{(i)}}{\arg \min }\left(g_{n}^{(i)}(\theta):=f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right)+\left\langle\nabla f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right), \theta-\theta_{n-1}^{(i)}\right\rangle+\frac{\lambda}{2}\left\|\theta-\theta_{n-1}^{(i)}\right\|^{2}\right) .
$$

- Asymptotic convergence to stationary points
- Iteration complexity of $\widetilde{O}\left(\varepsilon^{-1}\right)$

$$
\begin{aligned}
\theta_{n}^{(i)} \leftarrow \underset{\theta \in \Theta^{(i)}}{\arg \min }\left(\langle\nabla, \theta\rangle+\frac{\lambda}{2}\|\theta\|^{2}-\lambda\left\langle\theta, \theta_{n-1}^{(i)}\right\rangle\right) & =\underset{\theta \in \Theta^{(i)}}{\arg \min }\left\|\theta-\left(\theta_{n-1}^{(i)}-\frac{1}{\lambda} \nabla\right)\right\|^{2} \\
& =\operatorname{Proj}_{\Theta^{(i)}}\left(\theta_{n-1}^{(i)}-\frac{1}{\lambda} \nabla\right)
\end{aligned}
$$

- (Block prox-linear on Riemannian manifold)

$$
\begin{aligned}
\theta_{n}^{(i)} & \leftarrow \underset{\theta \in \Theta^{(i)}}{\arg \min }\left(g_{n}^{(i)}(\theta):=f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right)+\left\langle\nabla f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right), \theta-\theta_{n-1}^{(i)}\right\rangle+\frac{\lambda}{2}\left\|\theta-\theta_{n-1}^{(i)}\right\|^{2}\right) \\
& =\operatorname{Proj}_{\Theta^{(i)}}\left(\theta_{n-1}^{(i)}-\frac{1}{\lambda} \nabla f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right)\right)
\end{aligned}
$$

- Asymptotic convergence to stationary points
- (Block prox-linear on Riemannian manifold)

$$
\begin{aligned}
\theta_{n}^{(i)} & \leftarrow \underset{\theta \in \boldsymbol{\Theta}^{(i)}}{\arg \min }\left(g_{n}^{(i)}(\theta):=f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right)+\left\langle\nabla f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right), \theta-\theta_{n-1}^{(i)}\right\rangle+\frac{\lambda}{2}\left\|\theta-\theta_{n-1}^{(i)}\right\|^{2}\right) \\
& =\operatorname{Proj}_{\boldsymbol{\Theta}^{(i)}}\left(\theta_{n-1}^{(i)}-\frac{1}{\lambda} \nabla f_{n}^{(i)}\left(\theta_{n-1}^{(i)}\right)\right)
\end{aligned}
$$

- Asymptotic convergence to stationary points
- (Block Proximal Updates on Hadamard manifolds/Stiefel manifolds)

$$
g_{n}^{(i)}(\theta)=f_{n}^{(i)}(\theta)+\frac{\lambda_{n}}{2} \cdot d^{2}\left(\theta, \theta_{n-1}^{(i)}\right)
$$

- Asymptotic convergence to stationary points
- Iteration complexity of $\widetilde{O}\left(\varepsilon^{-1}\right)$

Hadamard manifolds includes: Euclidean spaces, Hyperbolic spaces, manifold of PD matrices

Outline

Introduction

Statement of results

Examples

Numerical experiments

- Optimistic likelihood problem:

$$
\begin{aligned}
& g_{n}^{(1)}(\mu)=\left\langle M^{-1} \sum_{m=1}^{M}\left(x_{m}-\mu\right)\left(x_{m}-\mu\right)^{T}, \Sigma_{n-1}^{-1}\right\rangle+\log \operatorname{det} \Sigma_{n-1}+\frac{\lambda_{n}}{2}\left\|\mu-\mu_{n-1}\right\|^{2} \\
& g_{n}^{(2)}(\Sigma)=\left\langle S_{n}, \Sigma^{-1}\right\rangle+\log \operatorname{det} \Sigma+\frac{\lambda}{4}\left\|\log \left(\Sigma_{n-1}^{-\frac{1}{2}} \Sigma \Sigma_{n-1}^{-\frac{1}{2}}\right)\right\|_{F}^{2}
\end{aligned}
$$

Figure: Comparison of block minimization and RBMM applied to optimistic likelihood problem under Fisher-Rao distance. RBMM is implemented with $\lambda=0.01,0.1,1$ respectively.

Geodesic subspace tracking problem

Figure: Convergence of RBMM in geodesic error under different settings. Average geodesic error is computed over 50 independent trials. The dimension is $d=30$ and the additive Gaussian noise has standard deviation $\sigma=0.1$. The value of other parameters are shown in the title for each panel.

Thanks!

G.C. Bento, O.P. Ferreira, and P.R. Oliveira, Proximal point method for a special class of nonconvex functions on hadamard manifolds, Optimization 64 (2015), no. 2, 289-319.

Arnaud Breloy, Sandeep Kumar, Ying Sun, and Daniel P Palomar, Majorization-minimization on the stiefel manifold with application to robust sparse pca, IEEE Transactions on Signal Processing 69 (2021), 1507-1520.
國 Cameron J Blocker, Haroon Raja, Jeffrey A Fessler, and Laura Balzano, Dynamic subspace estimation with grassmannian geodesics, arXiv preprint arXiv:2303.14851 (2023).

Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, and Tong Zhang, Proximal gradient method for nonsmooth optimization over the stiefel manifold, SIAM Journal on Optimization 30 (2020), no. 1, 210-239.
Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo, and Jong-Shi Pang, A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing, IEEE Signal Processing Magazine 33 (2015), no. 1, 57-77.

Wen Huang and Ke Wei, Riemannian proximal gradient methods, Mathematical Programming 194 (2022), no. 1-2, 371-413.
击 Viet Nguyen, Soroosh Shafieezadeh-Abadeh, Man-Chung Yue, Daniel Kuhn, and Wolfram Wiesemann, Calculating optimistic likelihoods using (geodesically) convex optimization, NeurIPS'19: Proceedings of the 33rd International Conference on Neural Information

