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Problem Set-up

» Problem Set-up
® (Objective function) f : M@ x . x MM 5 R — geodesically smooth in each block

® (Constraint Sets) @ = @) x ... x O™ C MWD x ... x MM — M) complete
Riemannian manifold, ©(") geodesically convex for rate of convergence

® (Constrained nonconvex problem)

0 ¢ argmin  f(61,...,0m).
0=[01,....0m]€O
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Related works

» Related works
® (Euclidean BMM) Rate of convergence for convex problem is O(= ') ([HRLP15]).
® (Riemannian MM) Rate of convergence for certain type of majorizer on specific
manifolds:
(i) Majorizer on manifolds:
o Linear majorizer on Stiefel manifolds [BKSP21]

o Proximal majorizer on Hadamard manifolds [BFO15]

(if) Majorizer on tangent spaces:
@ Tangent prox-linear on Stiefel manifolds ([CMMCSZ20])

o Tangent prox-linear on Riemannian manifolds [HW22] (assuming retraction convexity)

Rtrei %)

Figure: Example of a retraction.
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Majorization-Minimization (MM)

» Majorization-Minimizaiton
® Choose a majorizing surrogate gn(0) of f at
anl
® 0, < argmingcg gn(0)

» Ex: PGD
® gn(0) =
F(On-1)+(VF(0r-1),0—0n-1)+5(10—0,1]
(prox-linear surr)

® 0, =Projg(0r-1— }VF(0s_1))

o

0 I
» Ex: Linear surrogate over Stiefel Manifold boos o0 Zos
® gn(9) = fn(on—l) + (an(on—1)7 0— 9n—1> . . .
® 0, = Projynxk (—=Vfa(6n-1)) Figure: Example of linear surrogate
over Stiefel manifold (Excerpted from
[BKSP21])
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Euclidean Block MM

» (Euclidean) Block Majorization-minimization: Forn=1,...,Nand i=1,...,m
g,si) — [Majorizing surrogate of f,,(i)(é) =f (65,1), e ,95,'-71), 0,9£i:r11), ce ,95’2)1)]

9,(,i) € arg mineee(")gR’f g,(,i)(G)

® Sequentially update each block while fixing the rest.

® Special case: Block PGD (block coordinate descent)
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Riemannian Block MM

» Riemannian Block MM: Forn=1,...,Nand i=1,...,m

g\ « [Majorizing surrogate of 0 £\ (0) := £ (6", -, 6™, 0,6(D, . .o{™, )]

1 Yn—1 > 1Y n—1

e 9 c 0 c MD: a Riemannian manifold
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Riemannian Block MM

» Riemannian Block MM: Forn=1,...,Nand i=1,...,m

g\ « [Majorizing surrogate of 0 £\ (0) := £ (6", -, 6™, 0,6(D, . .o{™, )]

1 Yn—1 > 1Y n—1

e 9 c 0 c MD: a Riemannian manifold
(7).
nt

® Two options for minimizing g

V,gi) € argminy 1 0 g,(yi)(ﬁ,(,'l]JrV)
9,171

Option 1: o) e arg m(_i)n g,(,i)(B); Option 2: ! line search
peet () (4,0
60,’ = Rtr (; ay’V,
" 9L11< i)
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» Pros and Cons:
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Riemannian Block MM

» Riemannian Block MM: Forn=1,...,Nand i=1,...,m

g\ « [Majorizing surrogate of 0 £\ (0) := £ (6", -, 6™, 0,6(D, . .o{™, )]

1 Yn—1 > 1Y n—1

e 9 c 0 c MD: a Riemannian manifold
(7).
nt

® Two options for minimizing g

V,Si) € argminy 1 0 gr(wi)(ﬁ,(jllHrV)
9,171

Option 1: o) e arg m(_i)n g,(,i)(B); Option 2: ! line search
peet () (4,0
60,’ = Rtr (; ay’V,
" 9(n11< i)

» Pros and Cons:

® Option 1 works for more general surrogates and objective functions, but the
convergence analysis is more complicated
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Riemannian Block MM

» Riemannian Block MM: Forn=1,...,Nand i=1,...,m

g\ « [Majorizing surrogate of 0 £\ (0) := £ (6", -, 6™, 0,6(D, . .o{™, )]

1 Yn—1 > 1Y n—1
e 9 c 0 c MD: a Riemannian manifold
® Two options for minimizing g,(f):

V,si) € argminy 1 0 gﬁi)(ﬁf,’l]+V)
0

i

)

—1
as, < line search

0 = Rer) (al?V)

n—1

Option 1: 95,") € argmin g,(,i)(e); Option 2:
peol)

» Pros and Cons:

® Option 1 works for more general surrogates and objective functions, but the
convergence analysis is more complicated

® Option 2 enjoys much simpler convergence analysis, but currently only allow
prox-linear surrogates for Euclidean submanifolds, also the objective function need to
be smooth in ambient space.
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Riemannian Block MM
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0

i

)
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as, < line search

0 = Rer) (al?V)

n—1

Option 1: 95,") € argmin g,(,i)(e); Option 2:
peol)

» Pros and Cons:

® Option 1 works for more general surrogates and objective functions, but the
convergence analysis is more complicated

® Option 2 enjoys much simpler convergence analysis, but currently only allow
prox-linear surrogates for Euclidean submanifolds, also the objective function need to
be smooth in ambient space.

» Rmk: The two options coincide in the Euclidean setting with prox-linear surrogates.

Riemannian Block Majorization-minimization April 10, 2023 7/30



Examples

» (Subspace Estimation with Grassmannian Geodesics|[BRFB23])
Xi = U;Gi + N;

where U; € RY*k has orthonormal columns representing a point on the
Grassmannian G(k, d); G; € R¥*¢ holds weight or loading vectors; and N; € R¥*¢ is
an independent additive noise matrix.

® Goal: Estimate U; given all X;
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Examples

» (Subspace Estimation with Grassmannian Geodesics [BRFB23])
Xi = U;Gi + N;

where U; € RY*¥ has orthonormal columns representing a point on the

Grassmannian G(k, d); G; € R¥*¢ holds weight or loading vectors; and N; € R¥*¢ is
an independent additive noise matrix.

® Goal: Estimate U; given all X;
Model U;:
Ui = U(t;) = Hcos(Ot;) + Ysin(Ot;)
Objective function f,

T

f(U)=f(H,Y,0) = {G}"T' I1X — U GillE = =D IXTU)IF + ¢
ii=1 i=1

® Two blocks: Q =[H Y] and ©
® Q € V%2 ;3 stiefel manifold
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Examples

» Other examples:
® (Optimilstic likelihood under Fisher-Rao distnce [NSAY*19])

mlnr’(u7 ﬁ< 1Z(x,,,— —;L)T,):_1>+Iogdet2

X

where ¥ € S, the manifold of positive definite matrices.

® (Robust PCA) .
min f(L,S) 2 \|S|1 + —|IM - L -S|
LS 2

rank(L) < r, so L represents a point on low-rank manifold.
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Statement of results
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Preliminaries

Assumption 1 (g-smooth objective and sublevel compactness) There exists a constant L¢ > 0
such that the function f : @ = ©(1) x ... x ©(M _ R is geodesically L¢-smooth of order 3 in

each block coordinate. Furthermore, the sublevel sets f ~1((—oc0,a)) = {6 € O : f(0) < a} are
compact for each a € R.
Definition (Geodesic L-smoothness of order 3)
The objective function f : M — R is geodesically L-smooth of order 8 (8 > 1) if it satisfies
X L B—1
[lgrad £(x) — My (grad f(y))|| < 5" (x,¥)

for all x, y € M, where [} : T, — T, is the parallel transport along a minimal geodesic joining x
and y, d(x,y) is the distance between x and y.

grad f(y)
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Preliminaries

Assumption 2 (g-convex constraints) Each e is geodesically convex. That is, given
any two points in ©(), there exists a distance minimizing geodesic contained in O that
joins the two points.
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Preliminaries

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:
(i) (Option 1) Each surrogate g\ is L ,-geodesically-smooth of order B for some
constant Lg >0 foralln>1andi=1,...,m.
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Assumption 3 (Good surrogates or good Manifold) Assume one of the three:
(i) (Option 1) Each surrogate g\ is L ,-geodesically-smooth of order B for some
constant Lg >0 foralln>1andi=1,...,m.
(ii) (Option 1) The manifolds M, ... M™ have uniformly lower bounded injectivity

radius; gﬁi) = proximal surrogates:

n

g(0) = £(0) + %dZ(O,O(ill). (could be ‘non-g-smooth’)

Riemannian Block Majorization-minimization April 10, 2023 14 /30



Preliminaries

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:
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radius; gﬁi) = proximal surrogates:

n

g(0) = £(0) + %dZ(O,O(ill). (could be ‘non-g-smooth’)

(iii) (Option 2) The manifolds M® ... M™ are compact; g$" = prox-linear
surrogates:
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(could be ‘non-g-smooth’)
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Preliminaries

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:

(i) (Option 1) Each surrogate g\ is L ,-geodesically-smooth of order B for some

constant Lg >0 foralln>1andi=1,...,m.

(ii) (Option 1) The manifolds M, ... M™ have uniformly lower bounded injectivity

radius; gﬁi) = proximal surrogates:

n

g(0) = £(0) + %dZ(O,O(ill). (could be ‘non-g-smooth’)

(iii) (Option 2) The manifolds M® ... M™ are compact; g$" = prox-linear
surrogates:

g)(0) = £0(052,) + (V£ (0] ), 0 - 07) ) + ||9 03,17

(could be ‘non-g-smooth’)

» Why proximal surrogates in (ii) may not be g-smooth (i)?
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Preliminaries

Proposition (Riemannian gradient of geodesic distance)
injectivity radius

—~ =
M = Complete Riemannian manifold, p € M with inj(p) >r. Leth: M — R,
h(x) = d3((x,p). If d(x,p) < r, then grad(h) = —2Exp*(p) as a vector in T, M.

14
—Exp;'(p)
- v
x y o -
P —Exp;*(p)
-Expr') 7 x ) —YExpz' ()
/ pad
4 /
/ / x
/ / \
¥ P >
~IYExpz' () —Exp;*(p)
(a) (b)

Figure: Examples on g-smoothness of d2(x, p). Panel (a) is an example in Euclidean space; Panel
(b) is a counterexample in hyperbolic space.
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Preliminaries

Proposition (Riemannian gradient of geodesic distance)
injectivity radius

M = Complete Riemannian manifold, p € M with inj(p) >r. Leth: M — R,
h(x) = di((x, p). If d(x,p) < r, then grad(h) = —2Exp, *(p) as a vector in T, M.

—Exp;*(p) p

X
—Expx ' (p)

—  y  T(-Expc'(®). I (~Expz(p) )
I (—Expz'(p)) B )

(a) (b) (c)

Figure: Examples on g-smoothness of d?(x, p) on S. Panel (a) is an counterexample; Panel (b)
(c) are the cases when g-smoothness inequality becomes an equality with L = 2.
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Preliminaries

Theorem ((LLBN '23+) Asymptotic convergence to stationary points; two blocks)

f = Objective function with m = 2 blocks. (6,)s>0 = Output of RBMM. Suppose
Assumptions 1-3 hold. Then every limit point of (8,),>0 is a stationary point of f over ©.
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Preliminaries

Assumption 4 (Distance-regularizing surrogates) There exists a strictly increasing
function ¢ : [0, 00) — R such that ¢(0) =0 and

W (0) = g(0) - (0) = 6(d(6,6(,))

foraln>1landi=1,...,m.
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Results

Assumption 4 (Distance-regularizing surrogates) For Option 1, there exists a strictly
increasing function ¢ : [0, 00) — R such that ¢(0) = 0 and

h(0) = &1 (0) = £7(0) > 6(d (9, 6,"1))
foraln>1landi=1,...,m.
Theorem (Asymptotic convergence to stationary points; many blocks)

Let f denote the objective function with m > 2. Let (0,),>0 be a output of RBMM.
Suppose Assumptions 1, 3, 4(for Option 1) hold. Then every limit point of (0,)s>0 is a
stationary point of f over ©.
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Preliminaries

Definition (e-approxiate stationary point): we say 8* € © is an e-approxiate stationary
point of f over O if

. * 7
— inf ( gradf(@ ,—> <+e.
< @)

where Ty MY .= {n € T,MY < Exp,y(n) € ©0}.
Definition (worst-case iteration complexity) :

N: := sup inf{n>1]|80, is an e-approximate stationary point of f over @},
N=C)

where (0,),>0 is a sequence of estimates produced by the algorithm with initial estimate
6.
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Results

Theorem (Rate of convergence for proximal surrogates on Riemannian manifolds with
lower bounded injectivity radius)

f = Objective function with m > 2 blocks. (0,)n>0 =output of RBMM. Suppose
Assumptions 1-3 hold. Assume [Option 1 with prox surrogates] or [Option 2 with
prox-linear surrogates].

(i) (Worst-case rate of convergence) There exists constants M and ¢ > 0 independent
of 6o such that

, , U M
— inf df(0n), 7 )| £ =7
1%{ 5, (o0 |77||>} Vi log

(ii) (Worst-case iteration complexity) The worst-case iteration complexity N. for RBMM
satisfies N. = O(¢~* (loge™1)?)
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Results

Theorem (Rate of convergence for smooth surrogates)

f =objective function with m > 2 blocks. (0,)s>0 =output of RBMM. Suppose
Assumptions 1-4 hold. Assume [Option 1 with g-smooth surrogates]. Suppose
Assumption 5 holds with ¢(x) = cx® for some constant ¢ > 0. Let a := (8 — 1)/5°.

(i) (Worst-case rate of convergence) There exists constants M, ¢ > 0 independent of 0
such that

1<k<n | neTy n/(log n)t/2

min {— inf <gradf(9n),”:;|>:| < M+ c 302, An(8o)

(i) (Worst-case iteration complexity) The worst-case iteration complexity N. for RBMM
satisfies N. = O (571/2"‘ (Iog 571)>.

(iii) (Optimal convergence rate) Further assume that the surrogate gaps Al — g,(,i) — 0

satisfy hf,i)(ﬁ) < cd?(o, Gf,i)) for some constant C > 0. Then the results in (i)-(ii)
hold with the improved exponent o = (8 — 1)/8.
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Examples

» (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM
becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])
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Riemannian Block Majorization-minimization April 10, 2023 24 /30



Examples

» (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM
becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])

® Our general result gives convergence rate (3(:‘ 1) even for nonconvex objectives with
convex constraints.
® The same rate was known for convex problems [HRLP15]

Riemannian Block Majorization-minimization April 10, 2023 24 /30



Examples

» (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM
becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])

® Our general result gives convergence rate (3(:‘ 1) even for nonconvex objectives with
convex constraints.
® The same rate was known for convex problems [HRLP15]

» (Block Prox-linear and Block PGD) Consider the following block prox-linear update
proposed in [XY13].

i . i i A i
080« argrmin (&17(0) = 0(02,) + (V600 000+ S0 — o0, 17).
ocol

® Asymptotic convergence to stationary points
® |teration complexity of O(e~!)

i . A . i 1
957) <— arg min ((V, 0) + 21617 — (8, Hg) 1)) = argmin ||6 — (05771 - 7V>
=) 2 oeol) A

. i 1
= PrOje(,') (9&11 - XV) .
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Examples

» (Block prox-linear on Riemannian manifold)
i . i i) pli i) pli i A i
08 « argmin (gé 0) = O+ (VEOL). 0 - 00, + Slle - 9511||2)
ool

. i 1 i) (i
= PrOJe(i) (95111 - XVf,,( )(95711))

® Asymptotic convergence to stationary points

Riemannian Block Majorization-minimization April 10, 2023 25/30



Examples

» (Block prox-linear on Riemannian manifold)

i . i i A i
0%) < arg min (gr(,)(G): £00 )+ (vED 0D ), 0 — 0 )+—||9—9511||2)
oeo() 2

= Projg() (9("’ - fo (6" ))

® Asymptotic convergence to stationary points

» (Block Proximal Updates on Hadamard manifolds/StiefeI manifolds)
g(0) = £0(0) + 3 - o (0.6,

® Asymptotic convergence to stationary points
® [teration complexity of O(e~1)

Hadamard manifolds includes: Euclidean spaces, Hyperbolic spaces, manifold of PD
matrices
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Numerical experiments
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Optimistic likelihood

» Optimistic likelihood problem:

-1 T —1 An 2
Pu) = < E — 1) (Xm — 1) ,Zn1> +logdet X1 + —~|lu — a1l
@) 1 A 11|
() = (50, T 7") + logdet X + 7 [leg (2. ATE, 2
F
0.0307 —#— Block minimization
—+— RBMMA=1

— 0.025 1 —— RBMM A =0.1 .

T —— RBMM A=0.01 10
4 0.020
=
4= 0.015 A

| .

~ 0.010 1 1072

i —#*— Block minimization
¥ 60051 —— RBMM A =1

—— RBMM A =0.1
—— RBMM A =0.01
0.000 4
0 50 100 150 200 250 300 10° 10! 102 10°
iteration iteration

Figure: Comparison of block minimization and RBMM applied to optimistic likelihood problem
under Fisher-Rao distance. RBMM is implemented with A = 0.01,0.1, 1 respectively.
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Geodesic subspace tracking problem

k=10,/=1,T=101 k=10,/=5,T=101
0.250
—— RBMM A =0 —— RBMMA=0
0225 —— RBMMA=1 05 —— RBMM
—— RBMMA=0.1 —— RBMMA=0.1
0.200 —e— RBMM A =0.01 04 —e— RBMM A =0.01
50175 5
o @
3 0.150 203
e e
g 0125 g
2 2
0.100 02
0.075 \
01
0.050 | =V
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration
k=15,1=1,T=101 k=10,/=1,T=11
0225
—— RBMM A =0 016 —— RBMM A =0
0.200 —— RBMMA=1 —— RBMMA=1
—— RBMMA=0.1 015 —— RBMMA=0.1
0175 —— RBMM A =0.01 —— RBMM A=0.01
. 5014
£ 0.150 g
5 5
@ 2013
go12s g
3 g
2 6,100 o012
0.075 011
0.050 0.10 S P
0 5 10 15 20 25 30 0 5 10 15 20 25 30
teration Iteration

Figure: Convergence of RBMM in geodesic error under different settings. Average geodesic error
is computed over 50 independent trials. The dimension is d = 30 and the additive Gaussian noise
has standard deviation 0 = 0.1. The value of other parameters are shown in the title for each
panel.
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