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Introduction

Problem Set-up

▶ Problem Set-up
• (Objective function) f :M(1)× · · ·×M(m) → R — geodesically smooth in each block

• (Constraint Sets) Θ = Θ(1) × · · · ×Θ(m) ⊆M(1) × · · · ×M(m) —M(i) complete

Riemannian manifold, Θ(i) geodesically convex for rate of convergence

• (Constrained nonconvex problem)

θ∗ ∈ argmin
θ=[θ1,...,θm ]∈Θ

f (θ1, . . . , θm).
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Introduction

Related works

▶ Related works
• (Euclidean BMM) Rate of convergence for convex problem is Õ(ε−1) ([HRLP15]).

• (Riemannian MM) Rate of convergence for certain type of majorizer on specific
manifolds:

(i) Majorizer on manifolds:
Linear majorizer on Stiefel manifolds [BKSP21]

Proximal majorizer on Hadamard manifolds [BFO15]

(ii) Majorizer on tangent spaces:
Tangent prox-linear on Stiefel manifolds ([CMMCSZ20])

Tangent prox-linear on Riemannian manifolds [HW22] (assuming retraction convexity) 

q 
q + V 

Rtrq(V) 

V 

Figure: Example of a retraction.
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Introduction

Majorization-Minimization (MM)

▶ Majorization-Minimizaiton
• Choose a majorizing surrogate gn(θ) of f at

θn−1
• θn ← argminθ∈Θ gn(θ)

▶ Ex: PGD
• gn(θ) =

f (θn−1)+⟨∇f (θn−1),θ−θn−1⟩+ L
2
∥θ−θn−1∥2

(prox-linear surr)
• θn = ProjΘ(θn−1 − 1

L
∇f (θn−1))

▶ Ex: Linear surrogate over Stiefel Manifold
• gn(θ) := fn(θn−1) + ⟨∇fn(θn−1), θ − θn−1⟩
• θn = ProjVn×k (−∇fn(θn−1))

Figure: Example of linear surrogate
over Stiefel manifold (Excerpted from
[BKSP21])
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Introduction

Euclidean Block MM

▶ (Euclidean) Block Majorization-minimization: For n = 1, . . . ,N and i = 1, . . . ,m g
(i)
n ←

[
Majorizing surrogate of f

(i)
n (θ) := f

(
θ
(1)
n , · · · , θ(i−1)

n , θ, θ
(i+1)
n−1 , · · · , θ(m)

n−1

)]
θ
(i)
n ∈ argmin

θ∈Θ(i)⊆RIi g
(i)
n (θ)

• Sequentially update each block while fixing the rest.

• Special case: Block PGD (block coordinate descent)
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Introduction

Riemannian Block MM

▶ Riemannian Block MM: For n = 1, . . . ,N and i = 1, . . . ,m

g
(i)
n ←

[
Majorizing surrogate of θ 7→ f

(i)
n (θ) := f

(
θ
(1)
n , · · · , θ(i−1)

n , θ, θ
(i+1)
n−1 , · · · , θ(m)

n−1

)]
• θ ∈ Θ(i) ⊆M(i): a Riemannian manifold

• Two options for minimizing g
(i)
n :

Option 1: θ
(i)
n ∈ argmin

θ∈Θ(i)

g
(i)
n (θ); Option 2:


V

(i)
n ∈ argminV∈T

θ
(i)
n−1

g
(i)
n (θ

(i)
n−1+V )

α
(i)
n ← line search

θ
(i)
n = Rtr

θ
(i)
n−1

(
α
(i)
n V

(i)
n

)
▶ Pros and Cons:

• Option 1 works for more general surrogates and objective functions, but the
convergence analysis is more complicated

• Option 2 enjoys much simpler convergence analysis, but currently only allow
prox-linear surrogates for Euclidean submanifolds, also the objective function need to
be smooth in ambient space.

▶ Rmk: The two options coincide in the Euclidean setting with prox-linear surrogates.
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Introduction

Examples

▶ (Subspace Estimation with Grassmannian Geodesics[BRFB23])

Xi = UiGi + Ni

where Ui ∈ Rd×k has orthonormal columns representing a point on the
Grassmannian G(k, d); Gi ∈ Rk×ℓ holds weight or loading vectors; and Ni ∈ Rd×ℓ is
an independent additive noise matrix.
• Goal: Estimate Ui given all Xi
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Introduction

Examples

▶ (Subspace Estimation with Grassmannian Geodesics [BRFB23])

Xi = UiGi + Ni

where Ui ∈ Rd×k has orthonormal columns representing a point on the
Grassmannian G(k, d); Gi ∈ Rk×ℓ holds weight or loading vectors; and Ni ∈ Rd×ℓ is
an independent additive noise matrix.
• Goal: Estimate Ui given all Xi

Model Ui :
Ui = U(ti ) = H cos(Θti ) + Y sin(Θti )

Objective function f ,

f (U) = f (H,Y ,Θ) = min
{Gi}Ti=1

∥Xi − U(ti )Gi∥2F = −
T∑
i=1

∥XT
i U(ti )∥2F + c

• Two blocks: Q = [H Y ] and Θ
• Q ∈ Vd×2k , a stiefel manifold
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Introduction

Examples

▶ Other examples:
• (Optimilstic likelihood under Fisher-Rao distnce [NSAY+19])

min
µ,Σ

f (µ,Σ) ≜

〈
M−1

M∑
m=1

(xm − µ) (xm − µ)T ,Σ−1

〉
+ log detΣ

where Σ ∈ Sn++ the manifold of positive definite matrices.

• (Robust PCA)

min
L,S

f (L, S) ≜ λ∥S∥1 +
1

2µ
∥M − L− S∥2F

rank(L) ≤ r , so L represents a point on low-rank manifold.
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Statement of results

Preliminaries

Assumption 1 (g -smooth objective and sublevel compactness) There exists a constant Lf > 0

such that the function f : Θ = Θ(1) × · · · ×Θ(m) → R is geodesically Lf -smooth of order β in
each block coordinate. Furthermore, the sublevel sets f −1((−∞, a)) = {θ ∈ Θ : f (θ) ≤ a} are
compact for each a ∈ R.

Definition (Geodesic L-smoothness of order β)

The objective function f :M→ R is geodesically L-smooth of order β (β > 1) if it satisfies∥∥grad f (x)− Γxy (grad f (y))
∥∥ ≤ L

2
dβ−1(x , y)

for all x , y ∈M, where Γyx : Tx → Ty is the parallel transport along a minimal geodesic joining x
and y , d(x , y) is the distance between x and y .

 

grad f(x) 

grad f(y) 

Γ"
#grad f(x) 

x y 
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Statement of results

Preliminaries

Assumption 2 (g -convex constraints) Each Θ(i) is geodesically convex. That is, given
any two points in Θ(i), there exists a distance minimizing geodesic contained in Θ(i) that
joins the two points.
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Statement of results

Preliminaries

Assumption 3 (Good surrogates or good Manifold) Assume one of the three:

(i) (Option 1) Each surrogate g
(i)
n is Lg -geodesically-smooth of order β for some

constant Lg ≥ 0 for all n ≥ 1 and i = 1, . . . ,m.

(ii) (Option 1) The manifolds M(1), . . . ,M(m) have uniformly lower bounded injectivity

radius; g
(i)
n = proximal surrogates:

g (i)
n (θ) = f (i)n (θ) +

λn

2
d2(θ, θ

(i)
n−1). (could be ‘non-g -smooth’)

(iii) (Option 2) The manifolds M(1), . . . ,M(m) are compact; g
(i)
n = prox-linear

surrogates:

g (i)
n (θ) = f (i)n (θ

(i)
n−1) + ⟨∇f (i)n (θ

(i)
n−1), θ − θ

(i)
n−1⟩+

λn

2
∥θ − θ

(i)
n−1∥

2

(could be ‘non-g -smooth’)

▶ Why proximal surrogates in (ii) may not be g -smooth (i)?
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Statement of results

Preliminaries

Proposition (Riemannian gradient of geodesic distance)

M = Complete Riemannian manifold, p ∈ M with

injectivity radius︷ ︸︸ ︷
inj(p) ≥ r . Let h : M → R,

h(x) = d2
M(x , p). If d(x , p) < r , then grad(h) = −2 Exp−1

x (p) as a vector in TxM.

 

−Exp%&'(𝑝) 

−Γ%
,Exp%&'(𝑝) −Exp,&'(𝑝) 

𝑝 

𝑥 𝑦 

𝑝 

𝑥 𝑦 

−Γ%
,Exp%&'(𝑝) 

−Exp%&'(𝑝) 

−Exp,&'(𝑝) 

(a) (b) 

Figure: Examples on g-smoothness of d2(x , p). Panel (a) is an example in Euclidean space; Panel
(b) is a counterexample in hyperbolic space.
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Statement of results

Preliminaries

Proposition (Riemannian gradient of geodesic distance)

M = Complete Riemannian manifold, p ∈ M with

injectivity radius︷ ︸︸ ︷
inj(p) ≥ r . Let h : M → R,

h(x) = d2
M(x , p). If d(x , p) < r , then grad(h) = −2 Exp−1

x (p) as a vector in TxM.

 

𝑝 
𝑥 

𝑦 

−Exp()*(𝑝)	 

−Exp.)*(𝑝)	 

Γ(
.(−Exp()*(𝑝)	) 

𝑝 

𝑥 

𝑦 Γ(
.(−Exp()*(𝑝))	) 

−Exp()*(𝑝)	 

−Exp.)*(𝑝)	 

𝑝 

𝑥 

𝑦 

−Exp()*(𝑝)	 

−Exp.)*(𝑝)	 
Γ(
.(−Exp()*(𝑝)	) 

(a) (b) (c) 

Figure: Examples on g-smoothness of d2(x , p) on S1. Panel (a) is an counterexample; Panel (b)
(c) are the cases when g-smoothness inequality becomes an equality with L = 2.
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Statement of results

Preliminaries

Theorem ((LLBN ’23+) Asymptotic convergence to stationary points; two blocks)

f = Objective function with m = 2 blocks. (θn)n≥0 = Output of RBMM. Suppose
Assumptions 1-3 hold. Then every limit point of (θn)n≥0 is a stationary point of f over Θ.
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Statement of results

Preliminaries

Assumption 4 (Distance-regularizing surrogates) There exists a strictly increasing
function ϕ : [0,∞) → R such that ϕ(0) = 0 and

h(i)
n (θ) := g (i)

n (θ)− f (i)n (θ) ≥ ϕ(d(θ, θ
(i)
n−1))

for all n ≥ 1 and i = 1, . . . ,m.
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Statement of results

Results

Assumption 4 (Distance-regularizing surrogates) For Option 1, there exists a strictly
increasing function ϕ : [0,∞) → R such that ϕ(0) = 0 and

h(i)
n (θ) := g (i)

n (θ)− f (i)n (θ) ≥ ϕ(d(θ, θ
(i)
n−1))

for all n ≥ 1 and i = 1, . . . ,m.

Theorem (Asymptotic convergence to stationary points; many blocks)

Let f denote the objective function with m ≥ 2. Let (θn)n≥0 be a output of RBMM.
Suppose Assumptions 1, 3, 4(for Option 1) hold. Then every limit point of (θn)n≥0 is a
stationary point of f over Θ.
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Statement of results

Preliminaries

Definition (ε-approxiate stationary point): we say θ∗ ∈ Θ is an ε-approxiate stationary
point of f over Θ if

− inf
η∈T∗

θn

〈
grad f (θ∗),

η

∥η∥

〉
≤

√
ε.

where T ∗
θ M(i) := {η ∈ TθM(i) : Expθ(η) ∈ Θ(i)}.

Definition (worst-case iteration complexity) :

Nε := sup
θ0∈Θ

inf {n ≥ 1 |θn is an ε-approximate stationary point of f over Θ},

where (θn)n≥0 is a sequence of estimates produced by the algorithm with initial estimate
θ0.
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Statement of results

Results

Theorem (Rate of convergence for proximal surrogates on Riemannian manifolds with
lower bounded injectivity radius)

f = Objective function with m ≥ 2 blocks. (θn)n≥0 =output of RBMM. Suppose
Assumptions 1-3 hold. Assume [Option 1 with prox surrogates] or [Option 2 with
prox-linear surrogates].

(i) (Worst-case rate of convergence) There exists constants M and c > 0 independent
of θ0 such that

min
1≤k≤n

[
− inf

η∈T∗
θn

〈
grad f (θn),

η

∥η∥

〉]
≤ M√

n/ log n

(ii) (Worst-case iteration complexity) The worst-case iteration complexity Nϵ for RBMM

satisfies Nϵ = O(ε−1
(
log ε−1

)2
)
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Statement of results

Results

Theorem (Rate of convergence for smooth surrogates)

f =objective function with m ≥ 2 blocks. (θn)n≥0 =output of RBMM. Suppose
Assumptions 1-4 hold. Assume [Option 1 with g-smooth surrogates]. Suppose
Assumption 5 holds with ϕ(x) = cxβ for some constant c > 0. Let α := (β − 1)/β2.

(i) (Worst-case rate of convergence) There exists constants M, c > 0 independent of θ0

such that

min
1≤k≤n

[
− inf

η∈T∗
θn

〈
grad f (θn),

η

∥η∥

〉]
≤

M + c
∑∞

n=1 ∆n(θ0)

nα/(log n)1/2

(ii) (Worst-case iteration complexity) The worst-case iteration complexity Nϵ for RBMM

satisfies Nϵ = O
(
ε−1/2α

(
log ε−1

))
.

(iii) (Optimal convergence rate) Further assume that the surrogate gaps h
(i)
n = g

(i)
n − f

(i)
n

satisfy h
(i)
n (θ) ≤ Cdβ(θ, θ

(i)
n ) for some constant C > 0. Then the results in (i)-(ii)

hold with the improved exponent α = (β − 1)/β.
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Examples

▶ (Euclidean BMM) When specialized on the standard Euclidean manifold, our RBMM
becomes the standard Euclidean Block MM (e.g., see BSUM in [HRLP15])

• Our general result gives convergence rate Õ(ε−1) even for nonconvex objectives with
convex constraints.

• The same rate was known for convex problems [HRLP15]

▶ (Block Prox-linear and Block PGD) Consider the following block prox-linear update
proposed in [XY13].

θ
(i)
n ← argmin

θ∈Θ(i)

(
g
(i)
n (θ) := f

(i)
n (θ

(i)
n−1) + ⟨∇f

(i)
n (θ

(i)
n−1), θ − θ

(i)
n−1⟩+

λ

2
∥θ − θ

(i)
n−1∥

2

)
.

• Asymptotic convergence to stationary points
• Iteration complexity of Õ(ε−1)

θ
(i)
n ← argmin

θ∈Θ(i)

(
⟨∇, θ⟩+

λ

2
∥θ∥2 − λ⟨θ, θ(i)n−1⟩

)
= argmin

θ∈Θ(i)

∥∥∥∥θ − (
θ
(i)
n−1 −

1

λ
∇
)∥∥∥∥2

= ProjΘ(i)

(
θ
(i)
n−1 −

1

λ
∇
)
.
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convex constraints.

• The same rate was known for convex problems [HRLP15]

▶ (Block Prox-linear and Block PGD) Consider the following block prox-linear update
proposed in [XY13].

θ
(i)
n ← argmin

θ∈Θ(i)

(
g
(i)
n (θ) := f

(i)
n (θ

(i)
n−1) + ⟨∇f

(i)
n (θ

(i)
n−1), θ − θ

(i)
n−1⟩+

λ

2
∥θ − θ

(i)
n−1∥

2

)
.

• Asymptotic convergence to stationary points
• Iteration complexity of Õ(ε−1)
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▶ (Block prox-linear on Riemannian manifold)

θ
(i)
n ← argmin

θ∈Θ(i)

(
g
(i)
n (θ) := f

(i)
n (θ

(i)
n−1) + ⟨∇f

(i)
n (θ

(i)
n−1), θ − θ

(i)
n−1⟩+

λ

2
∥θ − θ

(i)
n−1∥

2

)
= ProjΘ(i)

(
θ
(i)
n−1 −

1

λ
∇f (i)n (θ

(i)
n−1)

)
• Asymptotic convergence to stationary points

▶ (Block Proximal Updates on Hadamard manifolds/Stiefel manifolds)

g (i)
n (θ) = f (i)n (θ) +

λn

2
· d2

(
θ, θ

(i)
n−1

)
• Asymptotic convergence to stationary points
• Iteration complexity of Õ(ε−1)

Hadamard manifolds includes: Euclidean spaces, Hyperbolic spaces, manifold of PD
matrices
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Hadamard manifolds includes: Euclidean spaces, Hyperbolic spaces, manifold of PD
matrices

Yuchen Li Riemannian Block Majorization-minimization April 10, 2023 25 / 30



Numerical experiments

Outline

Introduction

Statement of results

Examples

Numerical experiments

Yuchen Li Riemannian Block Majorization-minimization April 10, 2023 26 / 30



Numerical experiments

Optimistic likelihood

▶ Optimistic likelihood problem:

g
(1)
n (µ) =

〈
M−1

M∑
m=1

(xm − µ) (xm − µ)T ,Σ−1
n−1

〉
+ log detΣn−1 +

λn

2
∥µ− µn−1∥2

g
(2)
n (Σ) =

〈
Sn,Σ

−1
〉
+ log detΣ +

λ

4

∥∥∥∥log(Σ
− 1

2
n−1ΣΣ

− 1
2

n−1

)∥∥∥∥2
F
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Figure: Comparison of block minimization and RBMM applied to optimistic likelihood problem
under Fisher-Rao distance. RBMM is implemented with λ = 0.01, 0.1, 1 respectively.
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Geodesic subspace tracking problem
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Figure: Convergence of RBMM in geodesic error under different settings. Average geodesic error
is computed over 50 independent trials. The dimension is d = 30 and the additive Gaussian noise
has standard deviation σ = 0.1. The value of other parameters are shown in the title for each
panel.

Yuchen Li Riemannian Block Majorization-minimization April 10, 2023 28 / 30



Numerical experiments

Thanks!

Yuchen Li Riemannian Block Majorization-minimization April 10, 2023 29 / 30



Numerical experiments

Frame Title

G.C. Bento, O.P. Ferreira, and P.R. Oliveira, Proximal point method for a special class of

nonconvex functions on hadamard manifolds, Optimization 64 (2015), no. 2, 289–319.

Arnaud Breloy, Sandeep Kumar, Ying Sun, and Daniel P Palomar,
Majorization-minimization on the stiefel manifold with application to robust sparse pca,
IEEE Transactions on Signal Processing 69 (2021), 1507–1520.

Cameron J Blocker, Haroon Raja, Jeffrey A Fessler, and Laura Balzano, Dynamic subspace

estimation with grassmannian geodesics, arXiv preprint arXiv:2303.14851 (2023).

Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, and Tong Zhang, Proximal gradient
method for nonsmooth optimization over the stiefel manifold, SIAM Journal on
Optimization 30 (2020), no. 1, 210–239.

Mingyi Hong, Meisam Razaviyayn, Zhi-Quan Luo, and Jong-Shi Pang, A unified algorithmic
framework for block-structured optimization involving big data: With applications in
machine learning and signal processing, IEEE Signal Processing Magazine 33 (2015), no. 1,
57–77.

Wen Huang and Ke Wei, Riemannian proximal gradient methods, Mathematical

Programming 194 (2022), no. 1-2, 371–413.

Viet Nguyen, Soroosh Shafieezadeh-Abadeh, Man-Chung Yue, Daniel Kuhn, and Wolfram

Wiesemann, Calculating optimistic likelihoods using (geodesically) convex optimization,
NeurIPS’19: Proceedings of the 33rd International Conference on Neural Information
Processing Systems (2019), no. 1249, 13943–13954.

Yangyang Xu and Wotao Yin, A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor factorization and
completion, SIAM Journal on imaging sciences 6 (2013), no. 3, 1758–1789.

Yuchen Li Riemannian Block Majorization-minimization April 10, 2023 30 / 30


	Introduction
	Statement of results
	Examples
	Numerical experiments

