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Introduction

I Complex anisotropic turbulent systems
I ubiquitous in geoscience, engineering and climate science
I strong intermittent instabilities
I partial observations

I An efficient continuous data assimilation algorithm is
developed for estimating the unobserved state and the
associated uncertainty.

I The new data assimilation scheme is combined with a
simple reduced order modeling technique.

I The new data assimilation scheme is then applied to the
Sabra shell model.
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Nonlinear Conditional Gaussian Systems
Despite the fully nonlinearity in many multiscale turbulent dynamical systems and the
non-Gaussian features in both the marginal and joint PDFs, these systems have
conditional Gaussian structures.
The general nonlinear conditional Gaussian systems

dv

dt
= A0(v, t) + A1(v, t)w + σv(v, t)Ẇv , (1a)

dw

dt
= a0(v, t) + a1(v, t)w + σw(v, t)Ẇw, (1b)

conditional on one realization (i.e., a random trajectory) of v, the conditional
distribution

p(w(t)|v(s ≤ t)
)
∼ N (µ,R) (2)

is Gaussian.

I Despite the conditional Gaussianity, the coupled system 1 remains highly
nonlinear and is able to capture the non-Gaussian features as in nature.

I The conditional Gaussian distribution in 2 has closed analytic form:

dµ = (a0 + a1µ) dt+ RA∗1(σvσ
∗
v)−1( dv − (A0 + A1µ) dt), (3a)

dR =
(
a1R + Ra∗1 + σwσ

∗
w −RA∗1(σvσ

∗
v)−1A1R

)
dt, (3b)
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Incorporating PDE into the Data Assimilation

Framework
Given a set of basis functions {ϕ1,ϕ2, . . . ,ϕR}. Projecting the PDE M onto these
basis leads to

duR

dt
= AuuR + u∗RBuuR + residual, (4)

where uR = (û1, . . . , ûR)T is the collection of the state variables in the projection

space with uR =
∑R

i=1 ûiϕi being the approximate solution of M.
Next, the R modes of uR are categorized into two groups:

I v the observed variables

I w the unobserved variables

Therefore, the system (4) can be rewritten as

dv

dt
= A

(v)
v v + v∗B

(v)
vv v + v∗B

(v)
vww + w∗B

(v)
www + residual1, (5a)

dw

dt
= A

(w)
w w + v∗B

(w)
vv v + v∗B

(w)
vw w + w∗B

(w)
www + residual2, (5b)

where the B
(·)
· in (5) are related to the Bu in (4).
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Incorporating PDE into the Data Assimilation

Framework
Finally, to get the conditional Gaussian structure, the self-interaction of w, namely the
quadratic nonlinearity between the unobserved variables themselves, together with the
residual terms are dropped. To compensate, additional parameterizations and
stochastic noise are utilized to approximate the contribution from these terms, namely,

w∗B
(v)
www + residual1 ≈ τ (v)

v (v) + σvẆv , (6a)

w∗B
(w)
www + residual2 ≈ τ (w)

v (v) + σwẆw. (6b)

I Motivation
I These terms represent the self-interactions between high frequencies.

Stochastic noise is a suitable surrogate to approximate the fast
variabilities.

I The unobserved variables in general may not contain only the fast
components. It’s essential to further include additional deterministic
parameterizations.

I Desired mathematical structure (conditional Gaussian).
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Determining the Parameterization and Noise

Coefficient

I Multivariate polynomial regression (MPR) method is used

to determine the terms τ
(v)
v (v) and τ

(w)
v (v), where both

terms are assumed to be a quadratic polynomial of v.

I Noise coefficients σv and σw are determined by the
standard deviation of the residual between the truth and
the MPR fit.
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Incorporating PDE into the Data Assimilation

Framework

Collecting all the above information yields the following
coupled model,

dv

dt
= A(v)

v v + v∗B(v)
vv v + v∗B(v)

vww + τ (v)
v (v) + σvẆv,

(7a)

dw

dt
= A(w)

w w + v∗B(w)
vv v + v∗B(w)

vw w + τ (w)
v (v) + σwẆw.

(7b)
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Model
I Sabra shell model

dun

dt
+νk2nun = i(akn+1u

∗
n+1un+2 +bknu

∗
n−1un+1−ckn−1un−1un−2)+fn,

(8)

n = 1 . . . N , a+ b+ c = 0, kn = k0λn.
I Structurally similar spectral properties as that of 3D Navier-Stokes

equations.
I Highly reduced degrees of freedom.
I Ability to numerically reproduce intermittencies.

I Model parameters
I Intershell ratio given by λ = 2, so that kn = k0λn, with k0 = 2−4. The

interaction coefficients are set to a = 1, b = c = −1/2. Constant forcing
with magnitude one are imposed onto the first two shells n = 1 and
n = 2.

I Observed and unobserved variables
I

v = (u1, u2, u5, u6)

w = (u3, u4, u7, u8).
(9)
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Dynamical regimes
Two dynamical regimes, which are differed by the viscosity coefficient ν, are studied
here. Regime I corresponds to a moderate viscosity ν = 0.09 with a total number of
the shells being N = 11. Regime II involves a tiny viscosity ν = 10−5 and the total
number of the shells is N = 20.
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I Non-Gaussian features, including the intermittency and extreme events, are
clearly illustrated in the time series
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Data Assimilation results
We compare the data assimilation skill of conditional Gaussian nonlinear data
assimilation (CGNDA) with the ensemble Kalman filter (EnKF) and nudging (also
known as Newtonian Relaxation).

1 2 3 4 5 6 7 8

shell number n

0

0.2

0.4

0.6

0.8

1
Pattern correlation

1 2 3 4 5 6 7 8

shell number n

0

0.5

1

1.5

2

2.5

3
RMSE

1 2 3 4 5 6 7 8

shell number n

0

0.2

0.4

0.6

0.8

1
Pattern correlation

1 2 3 4 5 6 7 8

shell number n

0

0.5

1

1.5

2

2.5

3
RMSE

CGNDA

ETKF

Nudging

(b) Regime II(a) Regime I

I ETKF is at least 20 times more expensive than CGNDA in both regimes.

I Only an 8-dimensional reduced order system is utilized in the CGNDA while the
full perfect system is adopted for the ETKF.
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Data Assimilation results

I Comparison of the posterior mean time series with the
reference solution (only the real part is shown here).
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Data Assimilation results
Why the recovered small-scale variables u7 and u8 using CGNDA are almost identical
to the reference solution?

du7

dt
= −νk27u7︸ ︷︷ ︸

{1}

+ iak8u
∗
8u9︸ ︷︷ ︸

{2}

+ ibk7u
∗
6u8 − ick6u6u5︸ ︷︷ ︸
{3}

. (10)

{2} which involves higher order shells is approximated by the closure term τ
(w)
v (v).

The term {1} is the viscous term, which damps the signal. The term {3} does not
involve u7 itself, and therefore it can be regarded as an external forcing term.
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I The energy associated with {1}, {2} and {3} is 11.5647%, 0.63% and
87.8052%.

I This means the approximate error is damped immediately.
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Recovery of the energy flux
The nonlinear flux through a shell n denoted by Πn can be computed as the difference
of nonlinear transfers involving only two triads,

Πn = kn=(u∗nu
∗
n+1un+2)− (ε− 1)kn−1=(u∗n−1u

∗
nun+1) (11)

where = denotes the imaginary part of the expression and ε = 1/2 is used here.

I The energy flux in shell numbers 2 to 4 obtained from the CGDNA closely
resembles that of the reference solution in several different time intervals.

I The intermittent bursts of energy transfer in wavenumbers 6 to 8 for CGDNA
also have a nearly perfect match with the arrival of these bursts in the reference.
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Closure approximation and noise inflation
The accuracy in applying such a closure approximation and the necessity of the closure
terms.
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I For the observed variables u2 and u5, the closure illustrates a high skill in
approximating the truth.

I The intermittent events are captured quite accurately in both the regimes.
I Comparing with the CGNDA with the closure approximation, it is obvious that

using only the noise inflation is not as skillful as the closure approximation,
which indicates the necessity of the closure terms.
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Suboptimal data assimilation

The CGNDA has one advantage that the posterior covariance is a time-dependent
function. In comparison, also as an analog to the 3DVar algorithm, we set the
posterior covariance to be a constant.
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Suboptimal data assimilation
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I The peaks of the posterior covariance align well with the
extreme events in the unobserved time series (especially
for u8).

I Indicates the necessity in recovering the intermittent
features using such a non-stationary uncertainty evolution.
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Conclusion

I An efficient continuous data assimilation scheme, the
CGNDA, is developed.

I A simple approximation modeling framework is utilized to
allow a starting PDE system to satisfy the mathematical
structure of the CGNDA scheme.

I The new algorithm is applied to the Sabra shell model,
which is a conceptual model for turbulence. It has been
shown that the CGNDA outweighs both the ETKF and
the nudging data assimilation schemes in terms of both
the accuracy and the computational efficiency.
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